If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10q^2-1000=0
a = 10; b = 0; c = -1000;
Δ = b2-4ac
Δ = 02-4·10·(-1000)
Δ = 40000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40000}=200$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200}{2*10}=\frac{-200}{20} =-10 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200}{2*10}=\frac{200}{20} =10 $
| 12x+10+5x+2+8x-2=360 | | 15+4(n+2)=27 | | 3y2+4y+7=0 | | 8(3x+8)-4x=164 | | h/4-11=-9 | | 1+19x=10x+5 | | 28=8k+12+7k | | (5-3x)-2(-2x+3)=7(1x+1)-(3x-6)+4 | | 3(4x-6)=5x-5 | | 8x+34=6x | | h/4−11=–9 | | 2x^2+2x−12=0 | | 5x-8+32+24=180 | | -(3v+1)=7(6v+6)=-37 | | (6b+3)(2-b)=0 | | X+90+3x=180 | | 2x=88x=88 | | 3(4x-6)=3x-1 | | 11x-1=19+4x | | 35r-21-35r+1935r−2=−35r+19 | | 243=55-v | | 2(-x+4)/2=11 | | 7(x+3)+2=7x+3 | | 3z+6(z+5)=-48 | | 5x+18=3(2x+4) | | 30.2(d−6)=0.3d+5−3 | | 3(1/2x+12)=x+6 | | -2x=7=-13 | | 4-x/3=-5 | | 2x=3+x-6=180 | | 85-3x=40 | | h4− 11=–9 |